

GEMS – Une évocation de la recherche en cours...

Center for Medical Genetics Antwerp University Hospital Antwerp, Belgium

Bart Loeys

Department of Human Genetics Radboud University Medical Center Nijmegen, The Netherlands

Bart.Loeys@uantwerp.be

20 ans ABSM - Brussels – October 5, 2019

The future...

"I like the dreams of the future better than the history of the past."

Thomas Jefferson "I would not say that the future is necessarily less predictable than the past. I think the past was not predictable when it started."

Donald Rumsfeld "People ask me to predict the future, when all I want to do is prevent it."

George W. Bush "I am the future, no need to predict it."

Donald Trump

My disclaimer

• No liability for false predictions in this presentation

1853 1866, 1900

April, 1953

J. D. WATSON F. H. C. CRICK Medical Research Council Unit for the Study of the Molecular Structure of Biological Systems, Cavendish Laboratory, Cambridge. April 2.

April, 2003

1991

FIRST PLANET OUTSIDE OUR SOLAR SYSTEM

The 2019 challenges for Marfan disease...

- 1. FBN1 gene mutations explain > 90% of all Marfan patients.
- 2. Genotype guided prediction of phenotype evolves slowly.
- 3. Current aortic risk models are poor at precisely predicting aortic dissection.
- 4. Contemporary treatment strategies do not stop aortic growth.

Bold future predictions for Marfan disease... in 2030

- 1. We will be able to identify all *FBN1* mutations predisposing for Marfan syndrome.
- 2. We will have identified dozens of genetic modifiers explaining variable expressivity of aortopathy.
- 3. We will have built a integrated aortic risk models allowing accurate prediction of aortic dissection.
- 4. We will have created gene specific designer drugs available for specific forms of thoracic aortic aneurysm/dissection, including Marfan syndrome.

FBN1 – associated phenotypes

Widespread *FBN1* mutations cause:

- Marfan syndrome
- Ectopia Lentis Syndrome
- Familial marfanoid body habitus
- Familial aortic aneurysm, MASS phenotype, MVP syndrome
- Weill-Marchesani syndrome (microspherophakia, short stature, brachydactyly)

Domain specific *FBN1* mutations cause:

- Stiff skin syndrome (4th LTBP domain RGD motif)
- Acromicric/geleophysic dysplasia (5th LTBP domain): short stature, joint stiffness

Marfan syndrome

1 in 5000

FBN1

Identical *FBN1* mutation Variable aortopathy expressivity Normal Severe

ID-C

1-O

33 34

1 24

32

23

31

Marfan syndrome presents with variable clinical presentation

MFS mild or no aortic disease

MFS with severe aortic disease

MFS with indeterminate data

] No MFS

Based on aortic Z-score, events and age

What explains the inter- and intrafamilial variability in phenotypical severity ?

Is the type of FBN1 mutation important?

Aortic and vascular disease

ORIGINAL RESEARCH ARTICLE

Heart, 2017

Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome

Romy Franken,^{1,2} Gisela Teixido-Tura,¹ Maria Brion,³ Alberto Forteza,⁴ Jose Rodriguez-Palomares,¹ Laura Gutierrez,¹ David Garcia Dorado,¹ Gerard Pals,⁵ Barbara JM Mulder,^{2,6} Artur Evangelista⁷

HMG, 2015

The clinical presentation of Marfan syndrome is modulated by expression of wild-type FBN1 allele

Mélodie Aubart¹, Marie-Sylvie Gross¹, Nadine Hanna^{1,2}, Marie-Thérèse Zabot⁴, Marc Sznajder⁵, Delphine Detaint^{1,3,†}, Laurent Gouya³, Guillaume Jondeau^{1,3}, Catherine Boileau^{1,3} and Chantal Stheneur^{3,*}

FBN1 HI and DN classification

	Normal	Haplo-insufficiency (HI)		
DNA	No abnormalities	Most commonly nonsense, frameshift, splice site or deletion		
Protein	Normal	Not made or degraded		
Matrix fibers Fibrillin-1 microfibrils	Fibrilin-1			
LTBP1	Sequestered TGF	3		
🚺 LAP	🔶 Activated TGFβ			

Marfan trial: genetics ancillary study

Pediatric Heart Network Marfan Clinical Trial

Included and randomized Patients: 608 patients from 21 clinical sites

Genetics Ancillary Study to Marfan Clinical Trial

Voluntary participation by donating additional blood sample and signing additional informed consent

Patients included in the Genetics Ancillary Study: -> 304 trial patients (50%) donated blood sample

Comparison DN vs HI for clinical feaures

8

Effect of genotype on treatment outcome

Intra- and interfamilial variable severity of Marfan aortopathy

Overall future goal

Apply current genomic technology into precision medicine in order to answer questions on rare diseases that were previously difficult to answer and that require an international collaborative effort

Development of scientific strategy

- 1. What is the best approach to identify these genomic modifiers?
- 2. Is the approach feasible?
- 3. What is needed to carry out the ideal approach?

1. Selection of the best approach

- Discussion concerning all possible approaches (n=7) among world Marfan experts from Ghent, Paris and Antwerp involved in F101G
- First choice strategy: Identify MFS individuals with specific FBN1 variants that are common enough to collect sufficient patients AND present a wide range of cardiovascular phenotypical severity
- -> Genome-wide Epistasis for cardiovascular severity in Marfan Study GEMS As a proof of concept for 101genomes project

2. Preliminary data supporting feasibility

Selection of the 7 most recurrent (familial) FBN1 variants

	FBN1 mutation	UMD-	Published
		FBN1	(n=4343)
		(n=3077)	
#1	c.IVS2+1G>A (c.247+1G>A) – exon 2-3	21	31
#2	p.Gly214Ser; c.640G>A – exon 6	16	17
#3	p.Ala882Val; c.2645C>T – exon 21	15	18
#4	c.IVS46+5G>A (c.5788+5G>A) – exon 46-47	29	34
#5	p.Met2347ValfsX19; c.7039_7040del AT – exon 57	16	18
#6	p.Asp2485Val; c.7454A>T – exon 59	16	18
# 7	p.lle2585Thr; c.7754T>C – exon 62	30	35

Mutation present in 1% of all MFS patients

UMD-*FBN1* http://www.umd.be/FBN1/ Published as reviewed in Groth et al, Genet in Med, 2017, 2018

2. Preliminary data supporting feasibility

Félicitations et merci à Mme Yvonne Jousten et l'ABSM !